Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Outbreak dynamics of COVID-19 in China and the United States.

Identifieur interne : 000421 ( Main/Exploration ); précédent : 000420; suivant : 000422

Outbreak dynamics of COVID-19 in China and the United States.

Auteurs : Mathias Peirlinck [États-Unis] ; Kevin Linka [États-Unis] ; Francisco Sahli Costabal [Chili] ; Ellen Kuhl [États-Unis]

Source :

RBID : pubmed:32342242

Descripteurs français

English descriptors

Abstract

On March 11, 2020, the World Health Organization declared the coronavirus disease 2019, COVID-19, a global pandemic. In an unprecedented collective effort, massive amounts of data are now being collected worldwide to estimate the immediate and long-term impact of this pandemic on the health system and the global economy. However, the precise timeline of the disease, its transmissibility, and the effect of mitigation strategies remain incompletely understood. Here we integrate a global network model with a local epidemic SEIR model to quantify the outbreak dynamics of COVID-19 in China and the United States. For the outbreak in China, in [Formula: see text] provinces, we found a latent period of 2.56 ± 0.72 days, a contact period of 1.47 ± 0.32 days, and an infectious period of 17.82 ± 2.95 days. We postulate that the latent and infectious periods are disease-specific, whereas the contact period is behavior-specific and can vary between different provinces, states, or countries. For the early stages of the outbreak in the United States, in [Formula: see text] states, we adopted the disease-specific values from China and found a contact period of 3.38 ± 0.69 days. Our network model predicts that-without the massive political mitigation strategies that are in place today-the United States would have faced a basic reproduction number of 5.30 ± 0.95 and a nationwide peak of the outbreak on May 10, 2020 with 3 million infections. Our results demonstrate how mathematical modeling can help estimate outbreak dynamics and provide decision guidelines for successful outbreak control. We anticipate that our model will become a valuable tool to estimate the potential of vaccination and quantify the effect of relaxing political measures including total lockdown, shelter in place, and travel restrictions for low-risk subgroups of the population or for the population as a whole.

DOI: 10.1007/s10237-020-01332-5
PubMed: 32342242
PubMed Central: PMC7185268


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Outbreak dynamics of COVID-19 in China and the United States.</title>
<author>
<name sortKey="Peirlinck, Mathias" sort="Peirlinck, Mathias" uniqKey="Peirlinck M" first="Mathias" last="Peirlinck">Mathias Peirlinck</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Linka, Kevin" sort="Linka, Kevin" uniqKey="Linka K" first="Kevin" last="Linka">Kevin Linka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sahli Costabal, Francisco" sort="Sahli Costabal, Francisco" uniqKey="Sahli Costabal F" first="Francisco" last="Sahli Costabal">Francisco Sahli Costabal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical and Metallurgical Engineering, School of Engineering and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Department of Mechanical and Metallurgical Engineering, School of Engineering and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuhl, Ellen" sort="Kuhl, Ellen" uniqKey="Kuhl E" first="Ellen" last="Kuhl">Ellen Kuhl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA. ekuhl@stanford.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32342242</idno>
<idno type="pmid">32342242</idno>
<idno type="doi">10.1007/s10237-020-01332-5</idno>
<idno type="pmc">PMC7185268</idno>
<idno type="wicri:Area/Main/Corpus">000786</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000786</idno>
<idno type="wicri:Area/Main/Curation">000786</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000786</idno>
<idno type="wicri:Area/Main/Exploration">000786</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Outbreak dynamics of COVID-19 in China and the United States.</title>
<author>
<name sortKey="Peirlinck, Mathias" sort="Peirlinck, Mathias" uniqKey="Peirlinck M" first="Mathias" last="Peirlinck">Mathias Peirlinck</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Linka, Kevin" sort="Linka, Kevin" uniqKey="Linka K" first="Kevin" last="Linka">Kevin Linka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sahli Costabal, Francisco" sort="Sahli Costabal, Francisco" uniqKey="Sahli Costabal F" first="Francisco" last="Sahli Costabal">Francisco Sahli Costabal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical and Metallurgical Engineering, School of Engineering and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Department of Mechanical and Metallurgical Engineering, School of Engineering and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuhl, Ellen" sort="Kuhl, Ellen" uniqKey="Kuhl E" first="Ellen" last="Kuhl">Ellen Kuhl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA. ekuhl@stanford.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biomechanics and modeling in mechanobiology</title>
<idno type="eISSN">1617-7940</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basic Reproduction Number (MeSH)</term>
<term>Betacoronavirus (MeSH)</term>
<term>COVID-19 (MeSH)</term>
<term>COVID-19 Vaccines (MeSH)</term>
<term>China (epidemiology)</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Coronavirus Infections (prevention & control)</term>
<term>Coronavirus Infections (transmission)</term>
<term>Geography (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (epidemiology)</term>
<term>Pneumonia, Viral (transmission)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>United States (epidemiology)</term>
<term>Viral Vaccines (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Betacoronavirus (MeSH)</term>
<term>Chine (épidémiologie)</term>
<term>Géographie (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Infections à coronavirus (prévention et contrôle)</term>
<term>Infections à coronavirus (transmission)</term>
<term>Infections à coronavirus (épidémiologie)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Pandémies (MeSH)</term>
<term>Pneumopathie virale (transmission)</term>
<term>Pneumopathie virale (épidémiologie)</term>
<term>Taux de reproduction de base (MeSH)</term>
<term>Vaccins antiviraux (MeSH)</term>
<term>États-Unis (épidémiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>COVID-19 Vaccines</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>China</term>
<term>United States</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Chine</term>
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
<term>États-Unis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Basic Reproduction Number</term>
<term>Betacoronavirus</term>
<term>COVID-19</term>
<term>Geography</term>
<term>Humans</term>
<term>Models, Theoretical</term>
<term>Pandemics</term>
<term>SARS-CoV-2</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Géographie</term>
<term>Humains</term>
<term>Modèles théoriques</term>
<term>Pandémies</term>
<term>Taux de reproduction de base</term>
<term>Vaccins antiviraux</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>République populaire de Chine</term>
<term>États-Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">On March 11, 2020, the World Health Organization declared the coronavirus disease 2019, COVID-19, a global pandemic. In an unprecedented collective effort, massive amounts of data are now being collected worldwide to estimate the immediate and long-term impact of this pandemic on the health system and the global economy. However, the precise timeline of the disease, its transmissibility, and the effect of mitigation strategies remain incompletely understood. Here we integrate a global network model with a local epidemic SEIR model to quantify the outbreak dynamics of COVID-19 in China and the United States. For the outbreak in China, in [Formula: see text] provinces, we found a latent period of 2.56 ± 0.72 days, a contact period of 1.47 ± 0.32 days, and an infectious period of 17.82 ± 2.95 days. We postulate that the latent and infectious periods are disease-specific, whereas the contact period is behavior-specific and can vary between different provinces, states, or countries. For the early stages of the outbreak in the United States, in [Formula: see text] states, we adopted the disease-specific values from China and found a contact period of 3.38 ± 0.69 days. Our network model predicts that-without the massive political mitigation strategies that are in place today-the United States would have faced a basic reproduction number of 5.30 ± 0.95 and a nationwide peak of the outbreak on May 10, 2020 with 3 million infections. Our results demonstrate how mathematical modeling can help estimate outbreak dynamics and provide decision guidelines for successful outbreak control. We anticipate that our model will become a valuable tool to estimate the potential of vaccination and quantify the effect of relaxing political measures including total lockdown, shelter in place, and travel restrictions for low-risk subgroups of the population or for the population as a whole.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32342242</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1617-7940</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Biomechanics and modeling in mechanobiology</Title>
<ISOAbbreviation>Biomech Model Mechanobiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Outbreak dynamics of COVID-19 in China and the United States.</ArticleTitle>
<Pagination>
<MedlinePgn>2179-2193</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10237-020-01332-5</ELocationID>
<Abstract>
<AbstractText>On March 11, 2020, the World Health Organization declared the coronavirus disease 2019, COVID-19, a global pandemic. In an unprecedented collective effort, massive amounts of data are now being collected worldwide to estimate the immediate and long-term impact of this pandemic on the health system and the global economy. However, the precise timeline of the disease, its transmissibility, and the effect of mitigation strategies remain incompletely understood. Here we integrate a global network model with a local epidemic SEIR model to quantify the outbreak dynamics of COVID-19 in China and the United States. For the outbreak in China, in [Formula: see text] provinces, we found a latent period of 2.56 ± 0.72 days, a contact period of 1.47 ± 0.32 days, and an infectious period of 17.82 ± 2.95 days. We postulate that the latent and infectious periods are disease-specific, whereas the contact period is behavior-specific and can vary between different provinces, states, or countries. For the early stages of the outbreak in the United States, in [Formula: see text] states, we adopted the disease-specific values from China and found a contact period of 3.38 ± 0.69 days. Our network model predicts that-without the massive political mitigation strategies that are in place today-the United States would have faced a basic reproduction number of 5.30 ± 0.95 and a nationwide peak of the outbreak on May 10, 2020 with 3 million infections. Our results demonstrate how mathematical modeling can help estimate outbreak dynamics and provide decision guidelines for successful outbreak control. We anticipate that our model will become a valuable tool to estimate the potential of vaccination and quantify the effect of relaxing political measures including total lockdown, shelter in place, and travel restrictions for low-risk subgroups of the population or for the population as a whole.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Peirlinck</LastName>
<ForeName>Mathias</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Linka</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sahli Costabal</LastName>
<ForeName>Francisco</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical and Metallurgical Engineering, School of Engineering and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuhl</LastName>
<ForeName>Ellen</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6283-935X</Identifier>
<AffiliationInfo>
<Affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA. ekuhl@stanford.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U01 HL119578</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Biomech Model Mechanobiol</MedlineTA>
<NlmUniqueID>101135325</NlmUniqueID>
<ISSNLinking>1617-7940</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000086663">COVID-19 Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014765">Viral Vaccines</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CitationSubset>S</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D050936" MajorTopicYN="N">Basic Reproduction Number</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086663" MajorTopicYN="N">COVID-19 Vaccines</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005843" MajorTopicYN="N">Geography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014481" MajorTopicYN="N" Type="Geographic">United States</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014765" MajorTopicYN="N">Viral Vaccines</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Coronavirus</Keyword>
<Keyword MajorTopicYN="N">Epidemiology modeling</Keyword>
<Keyword MajorTopicYN="N">Network model</Keyword>
<Keyword MajorTopicYN="N">SEIR model</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32342242</ArticleId>
<ArticleId IdType="doi">10.1007/s10237-020-01332-5</ArticleId>
<ArticleId IdType="pii">10.1007/s10237-020-01332-5</ArticleId>
<ArticleId IdType="pmc">PMC7185268</ArticleId>
<ArticleId IdType="mid">NIHMS1589314</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Jun;92(6):645-659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32141624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 Aug;20(8):911-919</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32353347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2019 Oct 31;16(159):20190356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31615329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1984 Oct 21;110(4):665-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6521486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Rev. 1993;15(2):265-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8174658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 2020 May 5;172(9):577-582</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2015-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Travel Med. 2020 Mar 13;27(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32052846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Mar 26;382(13):1199-1207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31995857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2019 Jan;25(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30560777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Methods Med Res. 1993;2(1):23-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8261248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 Feb 26;215(4536):1053-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7063839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Feb 18;9(1):2216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30778107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 Feb;91:264-266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31953166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 1995 Feb;125(2):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7881192</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Chili</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Stanford (Californie)</li>
</settlement>
<orgName>
<li>Université Stanford</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Peirlinck, Mathias" sort="Peirlinck, Mathias" uniqKey="Peirlinck M" first="Mathias" last="Peirlinck">Mathias Peirlinck</name>
</region>
<name sortKey="Kuhl, Ellen" sort="Kuhl, Ellen" uniqKey="Kuhl E" first="Ellen" last="Kuhl">Ellen Kuhl</name>
<name sortKey="Linka, Kevin" sort="Linka, Kevin" uniqKey="Linka K" first="Kevin" last="Linka">Kevin Linka</name>
</country>
<country name="Chili">
<noRegion>
<name sortKey="Sahli Costabal, Francisco" sort="Sahli Costabal, Francisco" uniqKey="Sahli Costabal F" first="Francisco" last="Sahli Costabal">Francisco Sahli Costabal</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000421 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000421 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32342242
   |texte=   Outbreak dynamics of COVID-19 in China and the United States.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32342242" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021